Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
J Lipid Res ; 63(11): 100274, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115595

RESUMO

Lipid accumulation in nonadipose tissues can cause lipotoxicity, leading to cell death and severe organ dysfunction. Adipose triglyceride lipase (ATGL) deficiency causes human neutral lipid storage disease and leads to cardiomyopathy; ATGL deficiency has no current treatment. One possible approach to alleviate this disorder has been to alter the diet and reduce the supply of dietary lipids and, hence, myocardial lipid uptake. However, in this study, when we supplied cardiac Atgl KO mice a low- or high-fat diet, we found that heart lipid accumulation, heart dysfunction, and death were not altered. We next deleted lipid uptake pathways in the ATGL-deficient mice through the generation of double KO mice also deficient in either cardiac lipoprotein lipase or cluster of differentiation 36, which is involved in an lipoprotein lipase-independent pathway for FA uptake in the heart. We show that neither deletion ameliorated ATGL-deficient heart dysfunction. Similarly, we determined that non-lipid-containing media did not prevent lipid accumulation by cultured myocytes; rather, the cells switched to increased de novo FA synthesis. Thus, we conclude that pathological storage of lipids in ATGL deficiency cannot be corrected by reducing heart lipid uptake.


Assuntos
Aciltransferases , Cardiomiopatias , Lipase Lipoproteica , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Cardiomiopatias/metabolismo , Lipase/metabolismo , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Camundongos Knockout , Miocárdio/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/deficiência , Aciltransferases/genética
2.
Cell Tissue Res ; 390(3): 429-439, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129532

RESUMO

Barth syndrome (BTHS) is a rare X-linked genetic disease caused by mutations in TAFAZZIN. The tafazzin (Taz) protein is a cardiolipin remodeling enzyme required for maintaining mitochondrial function. Patients with BTHS exhibit impaired mitochondrial respiratory chain and metabolic function and are susceptible to serious infections. B lymphocytes (B cells) play a vital role in humoral immunity required to eradicate circulating antigens from pathogens. Intact mitochondrial respiration is required for proper B-cell function. We investigated whether Taz deficiency in mouse B cells altered their response to activation by anti-cluster of differentiation 40 (anti-CD40) + interleukin-4 (IL-4). B cells were isolated from 3-4-month-old wild type (WT) or tafazzin knockdown (TazKD) mice and were stimulated with anti-CD40 + IL-4 for 24 h and cellular bioenergetics, surface marker expression, proliferation, antibody production, and proteasome and immunoproteasome activities determined. TazKD B cells exhibited reduced mRNA expression of Taz, lowered levels of cardiolipin, and impairment in both oxidative phosphorylation and glycolysis compared to WT B cells. In addition, anti-CD40 + IL-4 stimulated TazKD B cells expressed lower levels of the immunogenic surface markers, cluster of differentiation 86 (CD86) and cluster of differentiation 69 (CD69), exhibited a lower proliferation rate, reduced production of immunoglobulin M and immunoglobulin G, and reduced proteasome and immunoproteasome proteolytic activities compared to WT B cells stimulated with anti-CD40 + IL-4. The results indicate that Taz is required to support T-cell-dependent signaling activation of mouse B cells.


Assuntos
Aciltransferases , Linfócitos B , Síndrome de Barth , Cardiolipinas , Animais , Camundongos , Aciltransferases/deficiência , Aciltransferases/genética , Linfócitos B/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Interleucina-4/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Antígenos CD40/metabolismo
3.
Cancer Lett ; 529: 126-138, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34999170

RESUMO

N-myristoyltransferase-1 (NMT1) catalyzes protein posttranslational myristoylation and functions as an oncogene in various cancers, although its roles in bladder cancer remain elusive. Here, we demonstrated that NMT1 was obviously upregulated in bladder cancer and correlated with overall survival and poor prognosis. Elevation of NMT1 promotes cancer progression and inhibits autophagy in vitro and in vivo. Furthermore, we confirm that LAMTOR1 was myristoylated by NMT1 at Gly 2, resulting in increased LAMTOR1 protein stability and lysosomal localization. Importantly, B13, an inhibitor of NMT1 enzymatic activity, exerted its anti-tumor effects against bladder cancer cells in vitro and in vivo. Taken together, these findings uncover a molecular mechanism of NMT1 in modulating bladder cancer progression and indicate that targeting NMT1 may represent a novel clinical intervention in bladder cancer.


Assuntos
Aciltransferases/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Animais , Autofagossomos/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Prognóstico , Estabilidade Proteica , Transdução de Sinais , Ubiquitinação , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nat Commun ; 12(1): 6877, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824276

RESUMO

AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the glycerol-3-phosphate pathway for the synthesis of phospholipids and triacylglycerols. AGPAT2 is the only AGPAT isoform whose loss-of-function mutations cause a severe form of human congenital generalized lipodystrophy. Paradoxically, AGPAT2 deficiency is known to dramatically increase the level of its product, PA. Here, we find that AGPAT2 deficiency impairs the biogenesis and growth of lipid droplets. We show that AGPAT2 deficiency compromises the stability of CDP-diacylglycerol (DAG) synthases (CDSs) and decreases CDS activity in both cell lines and mouse liver. Moreover, AGPAT2 and CDS1/2 can directly interact and form functional complexes, which promote the metabolism of PA along the CDP-DAG pathway of phospholipid synthesis. Our results provide key insights into the regulation of metabolic flux during lipid synthesis and suggest substrate channelling at a major branch point of the glycerol-3-phosphate pathway.


Assuntos
Aciltransferases/metabolismo , Diglicerídeos de Citidina Difosfato/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Ácidos Graxos/metabolismo , Aciltransferases/deficiência , Animais , Vias Biossintéticas , Linhagem Celular , Diacilglicerol Colinofosfotransferase/deficiência , Humanos , Gotículas Lipídicas/metabolismo , Lipogênese , Fígado/metabolismo , Camundongos , Complexos Multienzimáticos , Ácido Oleico/metabolismo , Ácidos Fosfatídicos/metabolismo
5.
PLoS One ; 16(7): e0255178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310656

RESUMO

Fasting stimulates catabolic reactions in skeletal muscle to survive nutrient deprivation. Cellular phospholipids have large structural diversity due to various polar-heads and acyl-chains that affect many cellular functions. Skeletal muscle phospholipid profiles have been suggested to be associated with muscle adaptations to nutritional and environmental status. However, the effect of fasting on skeletal muscle phospholipid profiles remains unknown. Here, we analyzed phospholipids using liquid chromatography mass spectrometry. We determined that fasting resulted in a decrease in 22:6-containing phosphatidylcholines (PCs) (22:6-PCs) and an increase in 18:2-containing PCs (18:2-PCs). The fasting-induced increase in 18:2-PCs was sufficient to complement 22:6-PCs loss, resulting in the maintenance of the total amount of polyunsaturated fatty acid (PUFA)-containing PCs. Similar phospholipid alterations occurred in insulin-deficient mice, which indicate that these observed phospholipid perturbations were characteristic of catabolic skeletal muscle. In lysophosphatidic acid acyltransferase 3-knockout muscles that mostly lack 22:6-PCs, other PUFA-containing PCs, mainly 18:2-PCs, accumulated. This suggests a compensatory mechanism for skeletal muscles to maintain PUFA-containing PCs.


Assuntos
Ácidos Graxos Insaturados/química , Músculo Esquelético/metabolismo , Fosfatidilcolinas/análise , Aciltransferases/deficiência , Aciltransferases/genética , Animais , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Jejum , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilcolinas/química , Análise de Componente Principal
6.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34281288

RESUMO

PURPOSE: We developed and phenotyped a pigmented knockout rat model for lecithin retinol acyltransferase (LRAT) using CRISPR/Cas9. The introduced mutation (c.12delA) is based on a patient group harboring a homologous homozygous frameshift mutation in the LRAT gene (c.12delC), causing a dysfunctional visual (retinoid) cycle. METHODS: The introduced mutation was confirmed by DNA and RNA sequencing. The expression of Lrat was determined on both the RNA and protein level in wildtype and knockout animals using RT-PCR and immunohistochemistry. The retinal structure and function, as well as the visual behavior of the Lrat-/- and control rats, were characterized using scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), electroretinography (ERG) and vision-based behavioral assays. RESULTS: Wildtype animals had high Lrat mRNA expression in multiple tissues, including the eye and liver. In contrast, hardly any expression was detected in Lrat-/- animals. LRAT protein was abundantly present in wildtype animals and absent in Lrat-/- animals. Lrat-/- animals showed progressively reduced ERG potentials compared to wildtype controls from two weeks of age onwards. Vison-based behavioral assays confirmed reduced vision. Structural abnormalities, such as overall retinal thinning, were observed in Lrat-/- animals. The retinal thickness in knockout rats was decreased to roughly 80% by four months of age. No functional or structural differences were observed between wildtype and heterozygote animals. CONCLUSIONS: Our Lrat-/- rat is a new animal model for retinal dystrophy, especially for the LRAT-subtype of early-onset retinal dystrophies. This model has advantages over the existing mouse models and the RCS rat strain and can be used for translational studies of retinal dystrophies.


Assuntos
Aciltransferases/deficiência , Aciltransferases/genética , Retinite Pigmentosa/genética , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Oftalmoscopia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Transgênicos , Retinite Pigmentosa/diagnóstico por imagem , Retinite Pigmentosa/fisiopatologia , Deleção de Sequência , Tomografia de Coerência Óptica , Visão Ocular
7.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019639

RESUMO

Tafazzin (TAZ) is a cardiolipin (CL) biosynthetic enzyme important for maintaining mitochondrial function. TAZ affects both the species and content of CL in the inner mitochondrial membrane, which are essential for normal cellular respiration. In pancreatic ß cells, mitochondrial function is closely associated with insulin secretion. However, the role of TAZ and CL in the secretion of insulin from pancreatic islets remains unknown. Male 4-month-old doxycycline-inducible TAZ knock-down (KD) mice and wild-type littermate controls were used. Immunohistochemistry was used to assess ß-cell morphology in whole pancreas sections, whereas ex vivo insulin secretion, CL content, RNA-sequencing analysis, and mitochondrial oxygen consumption were measured from isolated islet preparations. Ex vivo insulin secretion under nonstimulatory low-glucose concentrations was reduced ~52% from islets isolated from TAZ KD mice. Mitochondrial oxygen consumption under low-glucose conditions was also reduced ~58% in islets from TAZ KD animals. TAZ deficiency in pancreatic islets was associated with significant alteration in CL molecular species and elevated polyunsaturated fatty acid CL content. In addition, RNA-sequencing of isolated islets showed that TAZ KD increased expression of extracellular matrix genes, which are linked to pancreatic fibrosis, activated stellate cells, and impaired ß-cell function. These data indicate a novel role for TAZ in regulating pancreatic islet function, particularly under low-glucose conditions.


Assuntos
Aciltransferases/deficiência , Aciltransferases/fisiologia , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/fisiologia , Mitocôndrias/fisiologia , Aciltransferases/genética , Animais , Cardiolipinas/análise , Cardiolipinas/química , Doxiciclina/farmacologia , Ácidos Graxos Insaturados/análise , Feminino , Fibrose , Técnicas de Silenciamento de Genes , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Consumo de Oxigênio/fisiologia , Pâncreas/patologia
8.
Plant Cell ; 33(5): 1472-1491, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33638637

RESUMO

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes. Phylogenetic analysis indicates that bona fide HCT function emerged in the progenitor of embryophytes. In vitro enzyme assays, moss phenolic pathway reconstitution in yeast and in planta gene inactivation coupled to targeted metabolic profiling, collectively indicate that P. patens HCT (PpHCT), similar to tracheophyte HCT orthologs, uses shikimate as a native acyl acceptor to produce a p-coumaroyl-5-O-shikimate intermediate. Phenotypic and metabolic analyses of loss-of-function mutants show that PpHCT is necessary for the production of caffeate derivatives, including previously reported caffeoyl-threonate esters, and for the formation of an intact cuticle. Deep conservation of HCT function in embryophytes is further suggested by the ability of HCT genes from P. patens and the liverwort Marchantia polymorpha to complement an Arabidopsis thaliana CRISPR/Cas9 hct mutant, and by the presence of phenolic esters of shikimate in representative species of the three bryophyte lineages.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Sequência Conservada , Embriófitas/enzimologia , Evolução Molecular , Acilação , Aciltransferases/deficiência , Biocatálise , Briófitas/enzimologia , Embriófitas/genética , Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Cinética , Modelos Biológicos , Fenóis/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
9.
Nat Commun ; 12(1): 610, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504785

RESUMO

The introduction of the CTLA-4 recombinant fusion protein has demonstrated therapeutic effects by selectively modulating T-cell activation in rheumatoid arthritis. Here we show, using a forward genetic approach, that a mutation in the SH3gl1 gene encoding the endocytic protein Endophilin A2 is associated with the development of arthritis in rodents. Defective expression of SH3gl1 affects T cell effector functions and alters the activation threshold of autoreactive T cells, thereby leading to complete protection from chronic autoimmune inflammatory disease in both mice and rats. We further show that SH3GL1 regulates human T cell signaling and T cell receptor internalization, and its expression is upregulated in rheumatoid arthritis patients. Collectively our data identify SH3GL1 as a key regulator of T cell activation, and as a potential target for treatment of autoimmune diseases.


Assuntos
Aciltransferases/deficiência , Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Doenças Autoimunes/enzimologia , Doenças Autoimunes/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Artrite Reumatoide/prevenção & controle , Autoimunidade , Endocitose , Feminino , Humanos , Células Jurkat , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Camundongos , Mutação/genética , Ratos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Regulação para Cima/genética
10.
FEBS Lett ; 595(3): 415-432, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33112430

RESUMO

Barth syndrome (BTHS) is a rare X-linked genetic disorder caused by mutations in the gene encoding the transacylase tafazzin and characterized by loss of cardiolipin and severe cardiomyopathy. Mitochondrial oxidants have been implicated in the cardiomyopathy in BTHS. Eleven mitochondrial sites produce superoxide/hydrogen peroxide (H2 O2 ) at significant rates. Which of these sites generate oxidants at excessive rates in BTHS is unknown. Here, we measured the maximum capacity of superoxide/H2 O2 production from each site and the ex vivo rate of superoxide/H2 O2 production in the heart and skeletal muscle mitochondria of the tafazzin knockdown mice (tazkd) from 3 to 12 months of age. Despite reduced oxidative capacity, superoxide/H2 O2 production was indistinguishable between tazkd mice and wild-type littermates. These observations raise questions about the involvement of mitochondrial oxidants in BTHS pathology.


Assuntos
Aciltransferases/genética , Síndrome de Barth/genética , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Musculares/enzimologia , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Aciltransferases/deficiência , Animais , Síndrome de Barth/enzimologia , Síndrome de Barth/patologia , Cardiolipinas/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , NAD/metabolismo , Consumo de Oxigênio/genética , Superóxidos/metabolismo
11.
Gut ; 70(5): 940-950, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32591434

RESUMO

OBJECTIVE: The rs641738C>T variant located near the membrane-bound O-acyltransferase domain containing 7 (MBOAT7) locus is associated with fibrosis in liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease, hepatitis B and C. We aim to understand the mechanism by which the rs641738C>T variant contributes to pathogenesis of NAFLD. DESIGN: Mice with hepatocyte-specific deletion of MBOAT7 (Mboat7Δhep) were generated and livers were characterised by histology, flow cytometry, qPCR, RNA sequencing and lipidomics. We analysed the association of rs641738C>T genotype with liver inflammation and fibrosis in 846 NAFLD patients and obtained genotype-specific liver lipidomes from 280 human biopsies. RESULTS: Allelic imbalance analysis of heterozygous human liver samples pointed to lower expression of the MBOAT7 transcript on the rs641738C>T haplotype. Mboat7Δhep mice showed spontaneous steatosis characterised by increased hepatic cholesterol ester content after 10 weeks. After 6 weeks on a high fat, methionine-low, choline-deficient diet, mice developed increased hepatic fibrosis as measured by picrosirius staining (p<0.05), hydroxyproline content (p<0.05) and transcriptomics, while the inflammatory cell populations and inflammatory mediators were minimally affected. In a human biopsied NAFLD cohort, MBOAT7 rs641738C>T was associated with fibrosis (p=0.004) independent of the presence of histological inflammation. Liver lipidomes of Mboat7Δhep mice and human rs641738TT carriers with fibrosis showed increased total lysophosphatidylinositol levels. The altered lysophosphatidylinositol and phosphatidylinositol subspecies in MBOAT7Δhep livers and human rs641738TT carriers were similar. CONCLUSION: Mboat7 deficiency in mice and human points to an inflammation-independent pathway of liver fibrosis that may be mediated by lipid signalling and a potentially targetable treatment option in NAFLD.


Assuntos
Aciltransferases/genética , Cirrose Hepática/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Aciltransferases/deficiência , Adulto , Idoso , Animais , Biópsia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genótipo , Haplótipos , Humanos , Inflamação/genética , Masculino , Proteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
12.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233602

RESUMO

Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (<1/1.000.000) and acquired (1-9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches.


Assuntos
Aterosclerose/genética , Doença das Coronárias/genética , Diabetes Mellitus/genética , Fígado Gorduroso/genética , Hipertrigliceridemia/genética , Lipodistrofia/genética , Aciltransferases/deficiência , Aciltransferases/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Distribuição da Gordura Corporal , Doença das Coronárias/etiologia , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/patologia , Resistência à Insulina , Lamina Tipo A/deficiência , Lamina Tipo A/genética , Metabolismo dos Lipídeos/genética , Lipodistrofia/complicações , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Pancreatite/etiologia , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Xantomatose/etiologia , Xantomatose/genética , Xantomatose/metabolismo , Xantomatose/patologia
13.
Cell Rep Med ; 1(7): 100120, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103129

RESUMO

Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.


Assuntos
Aciltransferases/genética , Grelina/análogos & derivados , Grelina/genética , Hipocampo/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Paralisia Supranuclear Progressiva/genética , Aciltransferases/deficiência , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Grelina/metabolismo , Hipocampo/patologia , Humanos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos , Transdução de Sinais , Memória Espacial/fisiologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia
14.
FASEB J ; 34(10): 13792-13808, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851726

RESUMO

Lipids secreted by the meibomian glands (MGs) of the eyelids are essential to the protection of the eye's surface. An altered meibum composition represents the primary cause of evaporative dry eye disease (DED). Despite the critical importance of the meibum, its biosynthetic pathways and the roles of individual lipid components remain understudied. Here, we report that the genetic deletion of Acyl-CoA:wax alcohol acyltransferase 2 (AWAT2) causes the obstruction of MGs and symptoms of evaporative DED in mice. The lipid composition of the meibum isolated from Awat2-/- mice revealed the absence of wax esters, which was accompanied by a compensatory overproduction of cholesteryl esters. The resulting increased viscosity of meibum led to the dilation of the meibomian ducts, and the progressive degeneration of the MGs. Overall, we provide evidence for the main physiological role of AWAT2 and establish Awat2-/- mice as a model for DED syndrome that can be used in studies on tear film-oriented therapies.


Assuntos
Aciltransferases/genética , Síndromes do Olho Seco/genética , Aciltransferases/deficiência , Aciltransferases/metabolismo , Animais , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Ésteres/metabolismo , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lágrimas/química , Lágrimas/metabolismo , Viscosidade
15.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32766721

RESUMO

Exome sequencing has identified the glyceronephosphate O-acyltransferase (GNPAT) gene as a genetic modifier of iron overload in hereditary hemochromatosis (HH). Subjects with HFE (Homeostatic Iron Regulator) p.C282Y mutations and the GNPAT p.D519G variant had more iron loading compared with subjects without the GNPAT variant. In response to an oral iron challenge, women with GNPAT polymorphisms loaded more iron as compared with women without polymorphisms, reinforcing a role for GNPAT in iron homeostasis. The aim of the present study was to develop and characterize an animal model of disease to further our understanding of genetic modifiers, and in particular the role of GNPAT in iron homeostasis. We generated an Hfe/Gnpat mouse model reminiscent of the patients previously studied and studied these mice for up to 26 weeks. We also examined the effect of dietary iron loading on mice with reduced Gnpat expression. Gnpat heterozygosity in Hfe knockout mice does not play a role in systemic iron homeostasis; Gnpat+/- mice fed a high-iron diet, however, had lower hepatic hepcidin (HAMP) mRNA expression, whereas they have significantly higher serum iron levels and transferrin saturation compared with wildtype (WT) littermates on a similar diet. These results reinforce an independent role of GNPAT in systemic iron homeostasis, reproducing in an animal model, the observations in women with GNPAT polymorphisms subjected to an iron tolerance test.


Assuntos
Aciltransferases/deficiência , Hemocromatose/enzimologia , Hepcidinas/metabolismo , Ferro da Dieta/metabolismo , Fígado/metabolismo , Aciltransferases/genética , Animais , Modelos Animais de Doenças , Hemocromatose/sangue , Hemocromatose/genética , Proteína da Hemocromatose/deficiência , Proteína da Hemocromatose/genética , Hepcidinas/genética , Homeostase , Ferro da Dieta/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais , Transferrina/metabolismo
16.
Mol Metab ; 34: 136-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180553

RESUMO

OBJECTIVE: The most common kidney cancer, clear cell renal cell carcinoma (ccRCC), is closely associated with obesity. The "clear cell" variant of RCC gets its name from the large lipid droplets that accumulate in the tumor cells. Although renal lipid metabolism is altered in ccRCC, the mechanisms and lipids driving this are not well understood. METHODS: We used shotgun lipidomics in human ccRCC tumors and matched normal adjacent renal tissue. To assess MBOAT7s gene expression across tumor severity, we examined histologically graded human ccRCC samples. We then utilized genome editing in ccRCC cell lines to understand the role of MBOAT7 in ccRCC progression. RESULTS: We identified a lipid signature for ccRCC that includes an increase in arachidonic acid-enriched phosphatidylinositols (AA-PI). In parallel, we found that ccRCC tumors have increased expression of acyltransferase enzyme membrane bound O-acyltransferase domain containing 7 (MBOAT7) that contributes to AA-PI synthesis. In ccRCC patients, MBOAT7 expression increases with tumor grade, and increased MBOAT7 expression correlates with poor survival. Genetic deletion of MBOAT7 in ccRCC cells decreases proliferation and induces cell cycle arrest, and MBOAT7-/- cells fail to form tumors in vivo. RNAseq of MBOAT7-/- cells identified alterations in cell migration and extracellular matrix organization that were functionally validated in migration assays. CONCLUSIONS: This study highlights the accumulation of AA-PI in ccRCC and demonstrates a novel way to decrease the AA-PI pool in ccRCC by limiting MBOAT7. Our data reveal that metastatic ccRCC is associated with altered AA-PI metabolism and identify MBOAT7 as a novel target in advanced ccRCC.


Assuntos
Aciltransferases/metabolismo , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Aciltransferases/deficiência , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/patologia , Proteínas de Membrana/deficiência , Células Tumorais Cultivadas
17.
J Biol Chem ; 295(18): 5970-5983, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184353

RESUMO

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7-/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7-/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7-/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.


Assuntos
Aciltransferases/metabolismo , Canais de Cloreto/metabolismo , Ácido Palmítico/metabolismo , Processamento de Proteína Pós-Traducional , Aciltransferases/deficiência , Aciltransferases/genética , Animais , Cães , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Rim/citologia , Rim/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Mutação , Fenótipo
18.
Am J Pathol ; 190(5): 1059-1067, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084365

RESUMO

Mutations in retinoid isomerase (RPE65) or lecithin-retinol acyltransferase (LRAT) disrupt 11-cis-retinal synthesis and cause Leber congenital amaurosis (LCA). Despite the success of recent RPE65 gene therapy, follow-up studies show that patients continue to experience photoreceptor degeneration and lose vision benefit over time. In Lrat-/- mouse model, mislocalized medium (M)-wavelength opsin was degraded, whereas mislocalized short (S)-wavelength opsin accumulated before the onset of cone degeneration. The mechanism for the foveal M/long-wavelength cone photoreceptor degeneration in LCA is unknown. By crossing Lrat-/- mice with a proteasome reporter mouse strain, this study showed that M-opsin-enriched dorsal cones in Lrat-/- mice exhibit proteasome stress because of the degradation of large amounts of M-opsin. Deletion of M-opsin relieves the proteasome stress and completely prevents M cone degeneration in Lrat-/-Opn1sw-/- mice (a pure M cone LCA model, Opn1sw encoding S-opsin) for at least 12 months. These results suggest that M-opsin degradation-associated proteasome stress plays a major role in M cone degeneration in Lrat-/- model. This finding may represent a general mechanism for M cone degeneration in multiple forms of cone degeneration because of M-opsin mislocalization and degradation. These results have important implications for the current gene therapy strategy for LCA that emphasizes the need for combinatorial therapies to both improve vision and slow photoreceptor degeneration.


Assuntos
Opsinas dos Cones/metabolismo , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Degeneração Neural/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Aciltransferases/deficiência , Aciltransferases/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Células Fotorreceptoras Retinianas Cones/metabolismo
19.
Nat Commun ; 11(1): 860, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054864

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids interact with each other in the mammalian plasma membranes, forming dynamic microdomains. How their interaction starts in the cells has been unclear. Here, based on a genome-wide CRISPR-Cas9 genetic screen for genes required for GPI side-chain modification by galactose in the Golgi apparatus, we report that ß1,3-galactosyltransferase 4 (B3GALT4), the previously characterized GM1 ganglioside synthase, additionally functions in transferring galactose to the N-acetylgalactosamine side-chain of GPI. Furthermore, B3GALT4 requires lactosylceramide for the efficient GPI side-chain galactosylation. Thus, our work demonstrates previously unexpected functional relationships between GPI-anchored proteins and glycosphingolipids in the Golgi. Through the same screening, we also show that GPI biosynthesis in the endoplasmic reticulum (ER) is severely suppressed by ER-associated degradation to prevent GPI accumulation when the transfer of synthesized GPI to proteins is defective. Our data demonstrates cross-talks of GPI biosynthesis with glycosphingolipid biosynthesis and the ER quality control system.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Glicoesfingolipídeos/biossíntese , Glicosilfosfatidilinositóis/biossíntese , Aciltransferases/deficiência , Aciltransferases/genética , Aciltransferases/metabolismo , Sistemas CRISPR-Cas , Degradação Associada com o Retículo Endoplasmático/genética , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/genética , Glicosilfosfatidilinositóis/genética , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Nature ; 573(7772): 139-143, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462771

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has a critical role in regulating cell fate, inflammation and immunity1,2. Cytokines and growth factors activate STAT3 through kinase-mediated tyrosine phosphorylation and dimerization3,4. It remains unknown whether other factors promote STAT3 activation through different mechanisms. Here we show that STAT3 is post-translationally S-palmitoylated at the SRC homology 2 (SH2) domain, which promotes the dimerization and transcriptional activation of STAT3. Fatty acids can directly activate STAT3 by enhancing its palmitoylation, in synergy with cytokine stimulation. We further identified ZDHHC19 as a palmitoyl acyltransferase that regulates STAT3. Cytokine stimulation increases STAT3 palmitoylation by promoting the association between ZDHHC19 and STAT3, which is mediated by the SH3 domain of GRB2. Silencing ZDHHC19 blocks STAT3 palmitoylation and dimerization, and impairs the cytokine- and fatty-acid-induced activation of STAT3. ZDHHC19 is frequently amplified in multiple human cancers, including in 39% of lung squamous cell carcinomas. High levels of ZDHHC19 correlate with high levels of nuclear STAT3 in patient samples. In addition, knockout of ZDHHC19 in lung squamous cell carcinoma cells significantly blocks STAT3 activity, and inhibits the fatty-acid-induced formation of tumour spheres as well as tumorigenesis induced by high-fat diets in an in vivo mouse model. Our studies reveal that fatty-acid- and ZDHHC19-mediated palmitoylation are signals that regulate STAT3, which provides evidence linking the deregulation of palmitoylation to inflammation and cancer.


Assuntos
Aciltransferases/metabolismo , Ácidos Graxos/metabolismo , Lipoilação , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Aciltransferases/deficiência , Animais , Carcinogênese , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Sequência Conservada , Cisteína/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Multimerização Proteica , Fator de Transcrição STAT3/química , Transdução de Sinais , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...